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The necessary and sufficient conditions are established for the existence of a linear invariant relation in the problem of a gyrostat 
moving in a magnetic field, taking the Burnett-London effect into account. The necessary and sufficient conditions for the existence 
of an additional quadratic integral of the reduced system are found. © 2000 Elsevier Science Ltd. All rights reserved. 

In the Hess solution [1] of the problem of a heavy rigid body moving around a fixed point, the position 
of the centre of mass satisfies the well-known Hess configuration condition. In Sretenskii's extension 
of the Hess solution [2] to the case of the motion of a heavy gyrostat, the Hess condition is also necessary 
for the existence of a linear invariant relation (LIR). This condition remains necessary for the existence 
of a LIR even in the motion of a complex mechanical system whose configuration and composition 
vary with time according to a given law, in a uniform gravitational field [3]. 

In the problem of a rigid body moving in a magnetic field, some new algebraic integrals have been 
obtained [4, 5]. For the motion of a gyrostat in a magnetic field, conditions have been found for the 
existence of a LIR of a special (Hess) type [6]. As shown in the present paper, in the presence of a 
magnetic moment LIRs exist of non-Hess type, including the projections of the angular momentum 
both onto the direction of the barycentric vector and onto the orthogonal direction in the plane of a 
circular section of the gyration ellipsoid. 

The availability of a LIR makes it possible to reduce the order of the system. To determine integrable 
cases of the reduced system, it is important to solve the problem of the existence of an additional 
quadratic integral (QI). One example is known [6] of the existence of such a QI for a system with a 
LIR of a special type. In what follows, the necessary and sufficient conditions for the existence of a QI 
in motion with a LIR of a gyrostat in a magnetic field will be established, and the form of the QI will 
be determined. 

1. THE CONDITIONS FOR INTEGRALS TO EXIST 

We will use the following notation for the equations of motion of a gyrostat in a magnetic field [6] 

x ' = ( x + k ) x K x + v x ( C v - F x - s ) ,  v" = v  xKx (1.1) 

where x = ,~, to is the angular velocity of the gyrostat, v is the unit vector in the direction of the gravity 
force, k is the gyrostatic moment, s is the radius vector of the gyrostat's centre of mass and A is the 
inertia operator of the gyrostat at the fixed point, K = A -1 and F = BK. The operators A, B and C are 
symmetric. 

System (1.1) ha,; first integrals 

v 2 = const, (x + k)v = const (1.2) 

A LIR of system (1.1) in general form may be written as 

(p, x) + (q, v) = ~ (1.3) 

In the solutions in [1-3, 6], the vectors p and s are collinear (p II s) and the coordinates of the centre 
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of mass satisfy the Hess condition (2.3). When there is no magnetic moment (B = 0), the condition 
P II s is necessary. When there is a magnetic moment (B # 0), as shown below, there is a LIR of non- 
Hess type (the vectors p and s are not collinear). 

We will formulate the result obtained for the case in which there is no dynamic symmetry. Let 
At  > A2 > A3 and let ei be an eigenvector of A belonging toAi. Along with the principal basis {el} we 
will consider a right orthobasis F = {m i} such that m2 = e3 and ml is a unit vector perpendicular to a 
circular section of the gravitational ellipsoid. If we let ko- denote the elements of the matric of the operator 
K in the basis F, this basis is given by the conditions m2 = e3, kll = k22. Throughout what follows, 
ai, = (a, mi). 

Theorem 1. System (1.1) has a LIR if and only if e 2 is an eigenvector of the operators B and C, the 
operator C has the form 

C ~- c22E + (C33 -- ¢22) m3 m r  + 5 (q mr  + q3mlm~) (1.4) 

and the following relations hold 

~,~=¢~kj3tfi I, ~.2=0 (1.5) 

sj = odi, s 2 = 0 (1.6) 

fl, =qo(k21 .'k23), f22 =qo(k23 +kl21) (1.7) 

The LIR in question may be written as 

x 3 + qo(kt IV3 + kl3V I ) = k I tk~lZi (1.8) 

where cij andf O. are the components of the operators C and F in F, E is the identity operator and 

q = qo(m3mt T + mlm3r)/(mt (1.9) 

~ = q o k l 3 ( k l l - k l 3 ) - f l 3  (1.10) 

Note that the operator C is defined up to a term kE and the term with c22E in (1.4) is unimportant. 
In the LIR (1.8) obtained for the general case, p1 = P2 = 0 and the case p II s, considered previously 

in [6], is feasible only if sl -- 0 which, by (1.6), is equivalent to ¢x(5 = 0. Thus, a LIR of the form 

(s, x)  + (q,  v )  = a (1.11) 

may exist in two cases [6]: 
1) tX = 0, S [l k, k [I m3 and condit ions (1.4) and (1.7) are satisfied; 
2) 8 0, s II m3, C = c22E+(c33 -c22)m3m~',f13 = (q, Kin3, m2) and conditions (1.7) are satisfied. 
The form of the LIR (1.8) is identical with that obtained in [6] for the special case mentioned. The 

essential difference is that, in the general case, s is not one of the axes of the basis F and it does not 
satisfy the Hess condition (2.3) presented below. 

For motions with LIR, the order of system (1.1) may be reduced in an obvious way, by eliminating 
x 3 using equality (1.8). Put 

Z = X - x3m 3 (1.12) 

Then, since p = m3, it follows from (1.3) that x = z + [a - (q, v)]m3, and the system of reduced order 
may be written as in the form 

z" = (q, v* )m 3 + [ z - ( q ,  v ) m  3 +ff.m 3 + k ] × / ( [ z - ( q ,  v ) m  3 +¢xm3]+ 

+ v  × (Cv  - s ) - v  × F [ z - ( q ,  ~)m 3 + ¢xm3] (1.13) 

V* = V X/ ( [z - - (q ,  v ) m  3 +if.m3] 
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Any QI of this system may be written in the form 

(z, Hiz) + (v, H2v) + 2(H 3 z, i,) + 2(h t, z) + 2(h 2,1,) = eonst (1.14) 

The necessary andl sufficient conditions for such an integral to exist are given by the following theorem. 

Theorem 2. If a QI of the reduced system exists, other than integrals (1.2), it may be written in the 
form 

(z + k) 2 + (c33 - c22 )k~ I v] - 2(k I ikl3)-I (S, Km t )v 3 (1.15) 

System (1.1) has a LIR (1.3) and (simultaneously) system (1.13) has a QI (1.14) if and only if conditions 
(1.5) and (1.6) hold and the operators B and C are expressible in the form 

B = ~(kt3d) -I bb r ,  C = c22E + (C33 --  c22)m3m ~" 

b = (Km I ) × m 2, d = k I ik33 - k?3 (1.16) 

The LIR is then x3 = a. 
Conditions for the existence of a QI in the case ~ = 0, corresponding to the motion of a rigid body, 

were considered in [6] on the assumption that a LIR of the special form (1.11) exists. 

2. P R O O F  OF T H E O R E M  1 

Proposition 1. No LIR (1.3) exists with p = 0. 

Proof. Let the LIR have the form (q, v) = ct. Then v = otq [q[ -2 +m, where (m, q) = 0. Differentiating 
the LIR along trajectories of system (1.1), we obtain (q, v, Kx) = 0, which is equivalent to the condition 
(q, m, Kx) = 0 Vm:(q, m) = 0 or q × m = 0 Vm:(q, m) = 0, so that q = 0. 

Since p ,  0, we may assume in (1.3), without loss of generality, that [ p [ = 1. Any vector x satisfying 
Eq. (1.3) may be expressed in the form 

x = [ c t - ( q , v ) ] p + m ,  (p, m)=O (2.1) 

Differentiating Eq. (1.3) along trajectories of system (1.1), we obtain the condition 

(p, x + k, Kx) + (p, v, Cv - Fx - s ) +  (q, v, K x ) = 0  (2.2) 

which must hold for all v and x expressible in the form of (2.1). 

Proposition 2. The vector p in the LIR (1.3) is orthogonal to a circular section of the gravitational 
ellipsoid. 

Proof. Substituting (2.1) into condition (2.2) and separating out the terms with m 2, we obtain the 
condition (p, m, K~) = 0V m : (p, m) = 0, which holds if and only if 

p(2) = 0, al(p(t)) 2 = a3(pt3)) 2 (2.3) 

where p(O are the coordinates of p in the principal basis and ai = A i ~ i ,  l ~ l  i "~" ( A j  - Ak)~ijk, where (i, 
j, k) is a permutation of (1, 2, 3). 

If we now introduce an orthobasis F = {ml, 1112, m3} so that ml = e2 × p, m2 = e2, m3 = p, it follows 
from (2.3) that kll = k22 , which proves Proposition 2. 

Condition (2.3) implied that, if ~0 denotes the angle between p and el, then tg29 = al/a 3. 

Proposition 3. Conditions (1.5) are necessary and sufficient for a LIR to exist. 

Proof. using (2.1) to separate out the terms linear in m in (2.2), we obtain c~(m3, m, Km3) + (m3, h, 
Kin) = 0, m = mdn  1 + m2m 2 or kn~.Em 1 - (k22~, 1 - ( x k 1 3 ) m  2 = 0 ,  which, since ml, mE are arbitrary, yields 
(1.5). 
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Note that the free term in condition (2.2) has the form a(m3, ~,, gm3) , and it vanishes when ~ = 0. 
There remain the terms with c v 2, vm, v, giving the following conditions. 

(In 3, v, ~ +(q, v)Fm3) -(q, v)(q, v, Kin3)  -- 0 (2.4) 

(q, v Xm3, m, Km3) + (m 3, t , ,  F m ) -  (q, v, Kin) = 0 V v, m: m 3 = 0 (2.5) 

(q, I,)~m 3, k, Km3)+ (m 3, v , s  + t ~ m 3 ) - c t ( q ,  v, K m 3 ) - 0  (2.6) 

Proposition 4. If a LIR exists, then necessarily e2 is an eigenvector of B, the parameter q has the form 
(1.9) and conditions (1.7) hold. 

Proof. Setting m = m 1 and m = m 2 in condition (2.5), we obtain (m3, v, Fe2) - (q, v)k13 --- kll (q, v, 
e2), (m3, v, Fml) -- (q, v, Kin1). These identities hold if and only if 

q2 =0, (e 2, Fm0=0 ,  (mj, Fe2)=0 

fll = q3kll -qlkl3, f22 = q3kll + qlk13 , kllql = kl3q3 

Hence it follows that ql = qokl3, q3 = qok11. This enables us to write q in the form (1.9), and f l l  and 
f22 may be written in the form (1.7). The condition (e2, Fro1) = 0 implies, thanks to the symmetry of 
the operator B, that (Be2, Kin1) = 0, and from (ml, Fe2) = 0 it follows that (Bmx, e2) = 0, in which case 
(Be2, ml) = 0. Since the vectors mx, Km 1 form a basis of the plane (ml, m3), it follows that Be2lle2, and 
e2 is an eigenvector of  the operators B, F and F r. 

Proposition 5. Conditions (1.6) are necessary for a LIR to exist. 

Proof. Condition (2.6) may be written in the form m3 x (s + txFm3) = ff.q x Km3, which is equivalent 
to conditions (1.6) with 8 in the form of (1.10). 

Proposition 6. If a LIR exists, the operator C must have the form of (1.4). 

Proof. Setting v = ml in (2.4), we get (Ce2, ml) = 0, while if u = ml + m3, then (Ce2, m3) = 0. 
Consequently, e2 is an eigenvector of C. Writing identity (2.4) in the form 

V2[C13V3 + (cll - c22)Vl] = V2 (Vlq! + V3q3) (q3k13 - qlk33 -f13)  

we get 

cl3 =q3 ~, q l - c 2 2 = q l S ,  5=q3k13-qlk33- f13 

This enables us to express the operator C in the form (1.4). 
We have thus proved that each of the conditions in Theorem 1 is necessary for a LIR to exist. The 

combination of  all these conditions is sufficient for a LIR to exist, since by Propositions 2-5 condition (2.2) 
will then hold for all v and all x given by condition (2.1). The LIR (1.3) itself may be wri~en in the form 
(1.8) if we take (1.9) into consideration and use the first condition of (1.5) to express ct in terms of ~.1. 

3. P R O O F  OF T H E O R E M  2 

Differentiating equality (1.14) along trajectories of system (1.13), we obtain the identity 

(z ' ,  Hiz+H~'v + h l ) + ( v  °, H2v +H3z+h2)f f i0  (3.1) 

where z', v" are given by system (1.13). 

Proposition Z The following conditions hold 

Hi = xE, hi = xk iml  (3.2) 

and these conditions are sufficient for the terms zkv ° (k = 1, 2, 3) in (3.1) to vanish. 
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Proof. Setting v = 0 in identity (3.1), we obtain 

( H i z + h  i, z + o t m 3 + k ,  ,Kz+ff.K'ms)=0, V=-:z3 = 0  (3.3) 

Since when z3 = 0 we have z × Kz = klsziz × ms, it follows that the condition 0r-/lz, z, Kz) = 0, which 
is deduced from (3.4), may be written in the form (Hlz, zlm2 - zzm0 = 0, whence we have 
X(~2 ) = 0. X(~2 ) = Z(111 ). Here H1 = {Z~p} in F. Since the elements X(~) do not affect the form of integral 
(1.14), they may be assumed to be arbitrary and the operator H1 may be written in the form of (3.2). 

• The term with z 2 in (3.3) takes the form (hi - X(oma3 + h), z, Kz), which yields the condition zl(hl - Xk, 
ms, z) = 0. This is possible only if h~ - XZ. II ms. In integral (1.14), z3 = 0 and the quantity (hi) 3 is arbit- 
rary. Putting (hi, ms) = 0, we obtain hi - XX = -x~sms, which implies the representation (3.2) for hi. 

We now verify that conditions (3.2) are sufficient for condition (3.3) to hold. The summand with z ° 
has the form (hi, ~xa3 + h, o.Kms) and it vanishes because the two factors are coplanar. The terms with 
z 1 may be written in the form 9{(a, z), where 

a = {x(o{m 3 + ~ )  x K in  3 + (/~.t Km~ x m! + ~ktK[m t x (~m~ + ~.)] = 

= (¢t + ~ .D (¢0q~ - ~ . , / ~ ) m z  

Taking condition (1.5) and the equality kn  = k22 into consideration, we obtain a = 0. 

Proposition 8. The  operator / /3  may be written in the form 

H 3 = 7jim3m r,  n = -f31k~l t = -2qokt3 

If X * O, then necessarily 

(3.4) 

k l ~  = k n ( f z ~ - f . )  (3.5) 

Proof. The  term,,; with z2v in (3.1) are 

kisz t (7., ms,  Harp) + (v ,  Kz, Hsz ) + ~{(~, z, Fz) = 0 (3.6) 

Setting z = m2, we obtain (v, m2, H3m2) = 0, and m2 is an eigenvector of  the operator Ha. 
Putting H3 = {X~ )} in F, we can write 

Ha z _ ,,,(3) z ~(3) -A,22 +zln, l i - -Hsm I-&22ml 

It follows from integral (1.2) that 

(z, v) = const - (am3 + k)v + (q, p)v3 

The term (H3z, v) in integral (1.14) may now be written in the form 

(Hsz,~,) = X ~( z ,v )  + z,(n,p) = z,(n,v) + ~ (v) 

where Pz(v) is a quadratic polynomial in vi, which may be included in the terms with 1-12 and h2 in the 
QI (1.14). Consequently, we may assume that (Hsz, v) = zl(n, v), whence it follows that / /3  = nml r. 
Condition (3.6) becomes 

klazlzz (n, v ) + zj (~ ,Kz ,  n) + x(¢ , z ,  Fz) "-0 

This condition :is satisfied only if 

n2 =O, klsnl - k l t n s  = ZfSl, klsnl + ka2na f -~fSl, Iqans - k ~ n t  = x ( f u  - f~o) 

Hence it follows that nl = O, n3 = - z k ~ f s l ,  and if Z ~ 0 we have relation (3.5). 
Consequently,/-/3 has the form (3.4). Using condition (1.7) for a LIR to exist, we infer from (3.5) 

that xk-t~f31 = 2qoklsx. 
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Proposition 9. If x = 0, system (1.1) has only the trivial OI v 2 = const. 

Proof. If Z = 0, identity (3.1) becomes 

0,,  KIz + ares - (q, ~,)ms], Hz~, +h2)  =0  

Hence it follows that 0', Kz, H2v ) = 0. This is possible only if H2 = z1E. Separating out  the terms 
with vz from the identity, we obtain 0', Kz, h2) = 0 and h2 = 0. Integral (1.14) takes the form 
V 2 = const. 

Supposing now that g ¢ O, we define 

H2 = xH~, h2 = xh~ 

Putting 

fl = z + nvsm i + Z]m], I"2 = Z - (q, v)m 3 + (xm~ 
we can write identity (3.1) as 

(fl,f2, Kf2) + (f],¢, Cp -s-Ff2)+(v, Kf2,H[v+nzlm 3 + hi)-- 0 (3.7) 

Proposition 10. A necessary condition for a QI of system (1.13) to exist other than (1.2) is that the 
operators B and C be expressible in the form (1.16) and that q = n = 0. The operator F then has the 
form 

F = ~kl~llbm r 

Proof. Separating out the terms with v 3 on the left of equality (3.7), we see, using (1.4), that 

nv3v2[(c ~ - c n )v 3 + 8qsv I + (q, v)faS ] i (q, v Xv, Km s, H~,'u ) 

(3.8) 

Suppose that n # 0. Setting v 1 = q3, v3 = "-ql, we get (c33 - c22)ql = &/], so that we can write 
representation (1.4) in the form C = c2yE+~q~lqq r. The identity obtained by comparing the terms with 
v 3 takes the form 

nVav2 (8qsql -! + faS) - (u, Km s, H~v) 

which is equivalent to the following system of conditions for the elements Xi~ of the operator Hi in r 

~ h -  , , , -  • - X21 = O, ,s~13 - *aS(g] ,  - g h )  

k ' +  ' n(~qsq~ 1 + f ~ ) =  aSZI3 Iqs(Z~ - ~ 1 )  

These conditions yield the following representation for the operator H i  

H~ = .x~2E + z!msm~ + Z2 (Kms XKms)r 

Zl = 'klaln(~/sqi "i +/aS), Z2 = Zl3(kaS~il) 

Separating out the terms with zv 2 in identity (3.7) and taking the last representation for C into 
consideration, we obtain 

(q, v ) [ (q ,  v)*lsz2 - n t h s  - *n)z~  vs  + n*lszt v2 + (z, v ,  F i n s )  + &/fl  (~, v ,  q)]  
0 .9 )  

-nv3 (m I , ~,, Fz) + (v, gz, H~v) = 0 

Setting z = m2, v = ml, we obtain, taking relation (3.4) into account, 

Z, -2k,  tkasz2 = 2qe2ki2s (3.10) 
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Setting z = m2, 1~ -- m 3 and taking equalities (1.7) and (1.10) into consideration, we obtain 

k, ,k.~x2 + qo 2 (2k 2 + 2k 2 - k t ,k~)  = 0 (3.11) 

Setting z = ml, "t, = vim 1 = v2m 2 in relation (3.9), we obtain 

2 2 
-~1 + 2~2(k t tkas - k~) + 4q0kta = 0 (3.12) 

It follows from equalities (3.10) and (3.12) that Zz = q0 z, but then (3.11) will hold only if ~3 = ~3 = 0, 
which is impossible. 

Thus, no QI exists with n ~ 0, but then, by representation (3.4), H a = 0, q = 0. Taking relations (1.7), 
(1.10) and (3.5) into consideration, we obtain 

fl l  =f22 =f31 = O, 8 = -fl3 (3.13) 

These conditions for F = BK yield 

f~ls = -Skt  ,d  -I = - f33ktsd -I, f~3 = kl ik~t 8 

([~/y are the elements of the operator B in F). 
Together with relations (3.13), this gives a representation o f F  in the form (3.8). Since Kb -- din3, it 

follows from this representation that we can express the operator B in the form (1.16). Representation 
(1.16) for the operator C when q = 0 is obtained from (1.4). 

Note that, since b - dam3, the first expression in (1.16) implies 

B =  , 'Am3m a 

In identity (3.7), the sums of the terms with z 3, z2v, v a, z 2 vanish. The sum of the terms with zl: ~1 
(m 1, am 3 = ~,, Kz) = kaa(ml, z, Kin3) + a(z, am3 + h, Kin3) is equal to z2(a + L3)(kllkl - Okla ), and 
it vanishes becau,;e of condition (1.5). We write out the remaining terms with zv 2, zv, v 2, v: 

cva (z, 1,, m a ) + (v, Kz, H~v) = 0, c = caa - Cz2 (3.14) 

(z,l,,s) + aSkl]l (Z, V, b) - (~, Kz, h[) =0 (3.15) 

c~.lv2va + a ( v ,  Kp, H~v)  - 0 

~'l (ml, v, s) + aLt 8k~ ) (m I , r ,  b) - a (v ,  Km a, h~) = 0 

Proposition 11. In a QI other than (1.2), the operator HE has the form 

(3.16) 

(3.17) 

H 2 = ~aE + ~ck~lmnm~ " (3.18) 

Proof. Analysis of condition (3.14) shows that it holds only ifH~ = H21X, where 1-12 has the form (3.18). 
It is not difficult to verify, using condition (1.5), that if 142 has the form (3.18), condition (3,16) is 

satisfied. 

Proposition 12  In a QI other than (1.2), the parameter h2 has the form 

h 2 = -~(kl lkt3)-~(s ,  K m 0 m 3  (3.19) 

Proof. Setting z = ml, v = m 3 in condition (3.15), we obtain (hl, m2) = 0. Setting z = m 2, v = m 3 in 
the same condition and taking (1.6) into consideration, we obtain (hl, ma) = 0. Consequently, hl, = 
hm3, and condition (3.15) becomes 

(z, v, s) + ask(3 I (z, v, b) = h(v, Kz, m a) 

Setting z = ml and z = mE in this condition, we see that it holds if and only if 
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h ='--(k, tk13)-'(k=ss3 + k, ,st) 

TMs enables us to write h 2 in the form (3.19). 
By virtue of relations (3.19), (1.5) and (1.6) condition (3.17) holds. 
The combination of all these necessary conditions for a QI to exist is sufficient for identity (3.1) to 

hold. Using the representations established for the operators Hi, H2 and/-/3 and the parameters hi and 
h2, we can write the QI (1.14) in the form (1.5). 

4. R E D U C I N G  THE ORDER OF THE SYSTEM 

Given the existence of a QI (1.14), we can write system (1.13) in the form 

z" = (z  + otto a + k ) x  K(z+otma)+(cvs - c2) t ,  xma 

1," = t, × K(z + otma), c2 =/q~l(s, Km,) 

Setting y = z + h, we express the system in terms of the basis F: 

Yi = Y2(it3Y! + c3)+(cva -c2)v2 

Y2 = -Y2(itsY, + ca)- (CVn - c2)V, 

v; = v~(itay, +c4)-i t tv3y2 

v~ = -v2(itay, + c4) + it ,vayl 

V'3=k,I(V,y2-V2y,),  q=c4- i t , (0 t+~.a ) ,  c4-'-/l'~'otd 

Integrals (1.2) and (1.15) become 

Put 

(4.1) 

(4.2) 

v 2 + v2 2 + v 2 = 1, YlV, + Y2v2 + ((x + ~.a)va = h, cv~ - 2c2va + i t iy2 = g (4.3) 

The first two integrals of (4.3) give 

y! = yCOS~, Y2 - ysin~ 

v j = b 2 c o s ~  + b3sin~, v2 = b2sin~ - b3cos~ 

= ( l -  V2) ~, b 2 = [ h - ( o t  + Z3)va]y -I, ba = ±(/~2 _b2 )~  

It follows from system .(4.2) that 

(y2)- = 2(cv s _ c2 )(v2Yl - vly2) 

(4,4) 

(4.5) 

(4.7) 

The problem of determining, e.g. the Euler angles of the basis F may also be reduced to solving a 
first-order equation. 

If cv3 - c2, then y = const and Yl, Y2 may he expressed in terms of elementary functions. 
I fkny ~> Ic31 ~(t), then as t ~ +0% ~(t) tends to a limit ~* given by the condition 

~," =/~(t)cos~ +f2(O 

(t) = -its)', A(t) = -c2 - (cvs - c2)[h- (ct + Xa)vs]y ~ 

(4.6) v ;  = ~{ i t  t (e - cv~ + 2c2vs)(l  - v l ) -  k~[h - ( ¢  + ~,3)vs ]2} ~ 

The solution of system (4.2) reduces to integrating the equation 

which gives (y2). = -2(cv3 -c2)b~y and, if cv3 + c2, then, taking the third of the integrals of (4.3) into 
account, we obtain an equation for v3 which is integrable in terms of elliptic functions 
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cos~* = --c'3(kl~Y)-1 

If k1~v < [c3l, we obtain a periodic solution, given for c ~ 0 by formulae (4.4) and (4.5) where, in 
accordance with Eq. (4.7), 

cos ~ = (b - a cos ~)(b cos ~ - a) -l 

sin ~ = (a 2 - b 2))~ sin t(b cos x- a) -I 

a=c a, b=kl3y, "¢=(a2-b2)Y2t+Cs 

Since v 3 = c: -I = const, the ads m3 attached to the body precesses about the vertical 
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