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The necessary and sufficient conditions are established for the existence of a linear invariant relation in the problem of a gyrostat
moving in a magnetic field, taking the Burnett-London effect into account. The necessary and sufficient conditions for the existence
of an additional quadraric integral of the reduced system are found. © 2000 Elsevier Science Ltd. All rights reserved.

In the Hess solution [1] of the problem of a heavy rigid body moving around a fixed point, the position
of the centre of mass satisfies the well-known Hess configuration condition. In Sretenskii’s extension
of the Hess solution [2] to the case of the motion of a heavy gyrostat, the Hess condition is also necessary
for the existence of a linear invariant relation (LIR). This condition remains necessary for the existence
of a LIR even in the motion of a complex mechanical system whose configuration and composition
vary with time according to a given law, in a uniform gravitational field [3].

In the problem of a rigid body moving in a magnetic field, some new algebraic integrals have been
obtained [4, 5]. For the motion of a gyrostat in a magnetic field, conditions have been found for the
existence of a LIR of a special (Hess) type [6]. As shown in the present paper, in the presence of a
magnetic moment LIRs exist of non-Hess type, including the projections of the angular momentum
both onto the direction of the barycentric vector and onto the orthogonal direction in the plane of a
circular section of the gyration ellipsoid.

The availability of a LIR makes it possible to reduce the order of the system. To determine integrable
cases of the reduced system, it is important to solve the problem of the existence of an additional
quadratic integral (QI). One example is known [6] of the existence of such a QI for a system with a
LIR of a special type. In what follows, the necessary and sufficient conditions for the existence of a QI
in motion with a LIR of a gyrostat in a magnetic field will be established, and the form of the QI will
be determined.

1. THE CONDITIONS FOR INTEGRALS TO EXIST

We will use the following notation for the equations of motion of a gyrostat in a magnetic field [6]
X" =(x+A)XKx+vx(Cv - Fx~s), v'=vxKx 1.1)

where X = 0, w is the angular velocity of the gyrostat, v is the unit vector in the direction of the gravity
force, A is the gyrostatic moment, s is the radius vector of the gyrostat’s centre of mass and A is the
inertia operator of the gyrostat at the fixed point, K = A™ and F = BK. The operators A, B and C are
symmetric.

System (1.1) has first integrals

v2 =const, (X + A)v = const (1.2)
A LIR of system (1.1) in general form may be written as
P.x)+(q,v)=0a (1.3)

In the solutions in [1-3, 6], the vectors p and s are collinear (p || s) and the coordinates of the centre
+Prikl. Mat. Mekh. Vol. 64, No. 1, pp. 7078, 2000.

65



66 V. Yu. Or'shanskii

of mass satisfy the Hess condition (2.3). When there is no magnetic moment (B = 0), the condition
P || s is necessary. When there is a magnetic moment (B # 0), as shown below, there is a LIR of non-
Hess type (the vectors p and s are not collinear).

We will formulate the result obtained for the case in which there is no dynamic symmetry. Let
A; > A, > A; and let ¢; be an eigenvector of A belonging to 4;. Along with the principal basis {e;} we
will consider a right orthobasis I' = {m;} such that m, = e; and m, is a unit vector perpendicular to a
circular section of the gravitational ellipsoid. If we let k; denote the elements of the matric of the operator
K in the basis T, this basis is given by the conditions m, = e3, kj; = ky;. Throughout what follows,
a;, = (a, m;).

Theorem 1. System (1.1) has a LIR if and only if e, is an eigenvector of the operators B and C, the
operator C has the form

C=C21E+(C33 —sz)msm;' +8(qm,1' +q3m|m;) (1.4)

and the following relations hold

A =oksk!, A, =0 (1.5)
s5=0d, 5,=0 (1.6)
S = ok = k), for = qolkis + k) @n
The LIR in question may be written as
x3 +qo(ky Vs + ki3vy) = ky kA, (1.8)

where c;; and f;; are the components of the operators C and F in T, E is the identity operator and

8 = qoki3(kyy —ki3) - fis (1.10)

Note that the operator C is defined up to a term KE and the term with c,F in (1.4) is unimportant.
In the LIR (1.8) obtained for the general case, p; = p, = 0 and the case p || s, considered previously
in [6], is feasible only if s; = 0 which, by (1.6), is equivalent to ad = 0. Thus, a LIR of the form

(s.x)+(q,v)=0 (1.11)

may exist in two cases [6]:
1) o =0, s || A\, A || m;3 and conditions (1.4) and (1.7) are satisfied;
2) 8§ =0, s ms, C = cpE+(c33 — cp)msm3, f13 = (g, Kmy, my) and conditions (1.7) are satisfied.
The form of the LIR (1.8) is identical with that obtained in [6] for the special case mentioned. The
essential difference is that, in the general case, s is not one of the axes of the basis I" and it does not

satisfy the Hess condition (2.3) presented below.
For motions with LIR, the order of system (1.1) may be reduced in an obvious way, by eliminating
x5 using equality (1.8). Put

Z=X-x3my (1.12)

Then, since p = m, it follows from (1.3) that x = z + [0 - (q, ¥)]ms3, and the system of reduced order
may be written as in the form

z° =(q, v m,; +[z—(q, v)m; +om; +A)X K[z—(q, v)m; +om,]+
+v xX(Cv —s)~v X Flz—(q, v)m; +0mn,] (1.13)

v’ =vxK[z—(q, v)m;+0m,]
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Any QI of this system may be written in the form
(z, Hz)+(v, Hyv)+2(Hyz,v)+2(h;, z)+2(h,, v)=const (1.14)
The necessary and sufficient conditions for such an integral to exist are given by the following theorem.

Theorem 2. If a QI of the reduced system exists, other than integrals (1.2), it may be written in the
form

(Z+ M) +(C33 = €30)k; 1V =20k ky3) ' (5, K )V, (1.15)

System (1.1) has a LIR (1.3) and (simultaneously) system (1.13) has a QI (1.14) if and only if conditions
(1.5) and (1.6) hold and the operators B and C are expressible in the form

B= 8(k|3d)—| bbr, C= szE+(C33 - Cn)m3m;. ( )
: 1.16
b = (Kml)X mz, d = k“k33 "'k|23

The LIR is thenx; = o
Conditions for the existence of a QI in the case A = 0, corresponding to the motion of a rigid body,
were considered in [6] on the assumption that a LIR of the special form (1.11) exists.

2. PROOF OF THEOREM 1
Proposition 1. No LIR (1.3) exists with p = 0.

Proof. Let the LIR have the form (g, v) = o.. Thenv = 0iq|q| ™ +m, where (m, q) = 0. Differentiating
the LIR along trajectories of system (1.1), we obtain (g, v, Kx) = 0, which is equivalent to the condition
(q, m, Kx) = 0Vm:(q,m) = 0orq X m = 0 Vm:(q, m) = 0, so thatq = 0.

Since p # 0, we may assume in (1.3), without loss of generality, that |p| = 1. Any vector x satisfying
Eq. (1.3) may be expressed in the form

x=[a-(q,v)jp+m, (p, m)=0 2.1)
Differentiating 15q. (1.3) along trajectories of system (1.1), we obtain the condition
(p. x+ A, Kx)+(p, v, Cv ~ Fx —s)+(q, v, Kx) = 0 (22)
which must hold for all v and x expressible in the form of (2.1).

Proposition 2. The vector p in the LIR (1.3) is orthogonal to a circular section of the gravitational
ellipsoid.

Proof. Substituting (2.1) into condition (2.2) and separating out the terms with m?, we obtain the
condition (p, m, Kx) = 0¥ m : (p, m) = 0, which holds if and only if

p? =0, a pM? = as( p™)? (2.3)

where p® are the coordinates of p in the principal basis and a; = A,A4;, A4; = (Aj — Ar)djx, where (i,
J, k) is a permutation of (1, 2, 3).

If we now introduce an orthobasis I' = {m;, m,, m;} so that m; = e, X p, m; = e,, m; = p, it follows
from (2.3) that ky; = ky, which proves Proposition 2.

Condition (2.3) implied that, if @ denotes the angle between p and e,, then tg’¢ = a;/a;.

Proposition 3. Conditions (1.5) are necessary and sufficient for a LIR to exist.
Proof. using (2.1) to separate out the terms linear in m in (2.2), we obtain o(m;, m, Kms) + {(ms, A,

Km) = 0, m = mym; + mym, or ky\Aymy — (kxh; — 0ky3)m; = 0, which, since m, m, are arbitrary, yields
(1.59).
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Note that the free term in condltlon 2. 2) has the form a{m;, A, Km,), and it vanishes when A, = 0.
There remain the terms with ¢ v2, vm, v, giving the following conditions.

(mj, v, Cv +(q. v)Fm,) -(q,vXq, v, Km;)=0 2.4)
(q, vX(mj, m, Km;)+(m;, v, Fm)—(q, v, Km)=0Vv, m:my =0 (2.5)
(q. v¥{my, A, Km;)+(m;, v, $ + 0Fm;) - 0q, v, Kmy) =0 (2.6)

Proposition 4. If a LIR exists, then necessarily e; is an eigenvector of B, the parameter q has the form
(1.9) and conditions (1.7) hold.

Proof. Setting m = m; and m = my, in condition (2.5), we obtain (m3, v, Fe,) — (q, v)k;3 = k11 (q, v,
ey), (ms, v, Fm;) = (q, v, Km;). These identities hold if and only if

q2=0. (ez, le)=0, (m|, Fe2)=0
fu =gk —aks, fon =gk ok, kg =kigs

Hence it follows that g; = ggk13, g3 = qok11. This enables us to write q in the form (1.9), and f;; and
fr may be written in the form (1.7). The condition (e;, Fm,) = 0 implies, thanks to the symmetry of
the operator B, that (Be,, Km,;) = 0, and from (m,, Fe,) = 0 it follows that (Bm,, e;) = 0, in which case
(Bez, m,) = 0. Since the vectors m;, Km; form al basis of the plane (m;, m;), it follows that Be,jle,, and
e, is an eigenvector of the operators B, F and F”.

Proposition 5. Conditions (1.6) are necessary for a LIR to exist.

Proof. Condition (2.6) may be written in the form m; X (s + 0Fm3) = oq X Kmjs, which is equivalent
to conditions (1.6) with 8 in the form of (1.10).

Proposition 6. If a LIR exists, the operator C must have the form of (1.4).

Proof. Setting v = m, in (2.4), we get (Ce;, m;) = 0, while if v = m; + m;, then (Ce,, m3) = 0.
Consequently, e, is an eigenvector of C. Writing identity (2.4) in the form

Valei3vs + (6 — eIy 1= Vo (Vig) +V343) (@3k13 — qiks3 — fis)
we get
a3 =40, - =qd 8=a3k;3-q k3~ fis
This enables us to express the operator C in the form (1.4).
We have thus proved that each of the conditions in Theorem 1 is necessary for a LIR to exist. The
combination of all these conditions is sufficient for a LIR to exist, since by Propositions 2-5 condition (2.2)

will then hold for all v and all x given by condition (2.1). The LIR (1.3) itself may be wriiten in the form
(1.8) if we take (1.9) into consideration and use the first condition of (1.5) to express a in terms of A;.

3. PROOF OF THEOREM 2
Differentiating equality (1.14) along trajectories of system (1.13), we obtain the identity

(z°, Hz+H]v+h)+(v°, Hv+Hyz+h,)=0 (3.1
where z', v* are given by system (1.13).
Proposition 7. The following conditions hold
Hy =XE, by =yAym, (3.2)

‘and these conditions are sufficient for the terms Z*v® (k = 1, 2, 3) in (3.1) to vanish.
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Proof. Setting v = 0 in identity (3.1), we obtain
(H,z+h,, z+omm; + A\, !Kz+aKm3)=0, Vz:z3=0 (3.3)

Since when z; = 0 we have z X Kz = ky32,2 X m,, it follows that the condition (H,z, z, Kz) = 0, which
is deduced from (3.4), may be written in the form (Hyz, zym; - z;m;) = 0, whence we have
x5 = 0.3 = x{). Here H; = {x{{} in T. Since the elements x}) do not affect the form of integral
(1.14), they may be assumed to be arbitrary and the operator H; may be written in the form of (3.2).

 The term with 2% in (3.3) takes the form (h; — x(om; + 1)), z, Kz), which yields the condition z;(h; — YA,
m3, z) = 0. This is possible only if h; — A || ms. In integral (1.14), z; = 0 and the quantity (h,); is arbit-
rary. Putting (h;, m;) = 0, we obtain h; — yA = —A;m;, which implies the representation (3.2) for h,.

We now verify that conditions (3.2) are sufficient for condition (3.3) to hold. The summand with z°
has the form ¢hy, cun; + A\, aKm3) and it vanishes because the two factors are coplanar. The terms with
z! may be written in the form x(a, z), where

a = oa(om; +A) X Km, + oA Kmy xm, +A,K[m, X (0, +1)]=
= (0 +Ag)(0ky3 ~ Ak Jmy .
Taking condition (1.5) and the equality k;;, = ky, into consideration, we obtain a = 0.
Proposition 8. The operator H3 may be written in the form
Hy=yxmmym!, n=-fyk =-2gk3 (34)
If x # 0, then necessarily
kiafa = kn(fz —fin) (3.5)
Proof. The terms with z?v in (3.1) are
kisz(z,mg, HIv) + (v, Kz, Hyz) + x(v.z, Fz) =0 (3.6)

Setting z = m;,, we obtain (v, m,, H3m,) = 0, and m, is an eigenvector of the operator H;,

Putting H; = {x(?)} in T, we can write

j
Hyz=XZz+2zn, n=Hym, - xSm,

It follows from integral (1.2) that

(z, v) = const — (0om; + Ay +(q, V)V,

The term (Hz, v) in integral (1.14) may now be written in the form

(Hyz,v) = 13 (z,v) + 2,(n,¥) = 7, (n,v) + By(v)
where P,(v) is a quadratic polynomial in vi, which may be included in the terms with H, and h; in the
QI (1.14). Consequently, we may assume that (Hsz, v) = z;(n, v), whence it follows that H; = nm/.
Condition (3.6) becomes
k|3Z|ZZ(n' v ) +2 (1’. KZ,II) + X("I',Z, Fl) =0
This condition is satisfied only if
ny =0, kgm —kyny =Xfy1, kgm +kopng = ~Xf3), kiang —kpom = %A, ~ f22)

Hence it follows that ny = 0, n3 = -—xk;} f31, and if x # 0 we have relation (3.5).
Consequently, H3 has the form (3.4). Using condition (1.7) for a LIR to exist, we infer from (3.5)

that X7} f51 = 2qokq3x-
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Proposition 9. If y, = 0, system (1.1) has only the trivial QI v?> = const.

Proof. If x = 0, identity (3.1) becomes

(v,K[z+omg3 —(q,v)mg), H,v +hy) =0

Hence it follows that (v, Kz, Hyv) = 0. This is possible only if H, = x,E. Separating out the terms
wzith vz from the identity, we obtain (v, Kz, h2) = 0 and h, = 0. Integral (1.14) takes the form
v® = const.

Supposing now that y # 0, we define

Hy =xH;, hy=xh;
Putting

fi=z+nvam +Am,, f,=2—(q, v)m; + am;
we can write identity (3.1) as

<f|,f2. Kf2)+ (f,.v,Cv -8~ n2)+(v, Kfz, Hz’v +nz|m3 + hé) =0 (37)

Proposition 10. A necessary condition for a QI of system (1.13) to exist other than (1.2) is that the
operators B and C be expressible in the form (1.16) and that g = n = 0. The operator F then has the
form

F = 8kgbm] (3.8)
Proof. Separating out the terms with v° on the left of equality (3.7), we see, using (1.4), that
nv3Vyl(css — cn)vs + g3V, +(q,v) fu3]1=(q,v Xv, Kmg, Hov)

Suppose that n # 0. Setting v; = g3, V3 = —g, We get (33 — c)q; = O3, so that we can write
representation (1.4) in the form C = c,,E+38¢7 qq”. The identity obtained by comparing the terms with
v* takes the form

nv3Vy(8gsqi” + fin) = (v, Kmg, H;v)
which is equivalent to the following system of conditions for the elements X of the operator H, in I'
X32 =X21 =0, kysXiz = ku(Xi1 - X22)
n(3qsa;” + fus) = kasXis + kis(Az2 — X3s)

These conditions yield the following representation for the operator Hj

Hj = Y5 E +xmgm] +,(Kmg)(Kmg)"

X =-k3n(dqsq + fis) X2 = Aislksshy))™

Separating out the terms with zv’ in identity (3.7) and taking the last representation for C into
consideration, we obtain

(9, v)[(@,v)ki32, — n(kss ~ kp)2;V3 + nkigz, v, +(z,v, Fmg) +8g;' (z,,q))
-nvg{m,,v, Fz)+(v,Kz, Hw) =0

(3.9)

Setting z = m;,, v = m,, we obtain, taking relation (3.4) into account,

% — 2k kgsXo = 292k (3.10)
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Setting z = m,, ¥ = m; and taking equalities (1.7) and (1.10) into consideration, we obtain
kkasXa + go (k3 + 2k13 — kijkgs) =0 (3.11)
Setting z = my, v = vim; = v,m, in relation (3.9), we obtain
= +2X2(Ky kas — ki3) + dgakss =0 (3.12)
It follows from equalities (3.10) and (3.12) that ¥, = g3, but then (3.11) will hold only if k; = k%; = 0,
which is impossible.

Thus, no QI exists with n # 0, but then, by representation (3.4), H; = 0, q = 0. Taking relations (1.7),
(1.10) and (3.5) into consideration, we obtain

Mm=m=fn=0 8=y (3.13)
These conditions for F = BK yield
Bis =~k d ™ =~ fugkizd ™, fay = ky i3

(B; are the elements of the operator B in T').

Together with relations (3.13), this gives a representation of F in the form (3.8). Since Kb = dm,, it
follows from this representation that we can express the operator B in the form (1.16). Representation
(1.16) for the operator C when g = 0 is obtained from (1.4).

Note that, since b — d4m;, the first expression in (1.16) implies

B= 8dk,'3‘Am3m§A
In identity (3.7), the sums of the terms with 2>, z%v, v*, z vanish. The sum of the terms with z'; A!
(m', am® = A, Kz) = A;0(m,, z, Kmy) + ofz, aom; + A, Kmj) is equal to zy(ot + As)(kyAy ~ 0kq3), and
it vanishes because of condition (1.5). We write out the remaining terms with zv*, zv, v*, v:

cvi{z,v,my)+ (v, Kz, Hiv) =0, c=cg3-Cp (3.14)
(z,v,s)+0dk;3 (z.v,b) - (v,Kz,h}) =0 (3.15)
cAVyvy + oy, Kp, Hv) =0 (3.16)

A (my,v,s)+ 0k 8k3 (my, v, b) — 0y, Kmg, h3) =0 (3.17)

Proposition 11. In a QI other than (1.2), the operator H, has the form

Hy = %3E + Xcki'mgm} (3.18)

Proof. Analysis of condition (3.14) shows that it holds only if /3 = H,/x, where H, has the form (3.18).
It is not difficult to verify, using condition (1.5), that if H, has the form (3.18), condition (3,16) is
satisfied.

Proposition 12. In a QI other than (1.2), the parameter h;, has the form
hy = < (ky1ky3) (s, Kmy)my (3.19)
Proof. Setting z = m,, v = mj; in condition (3.15), we obtain (h}, m;) = 0. Setting z = m%, v = m, in
the same condition and taking (1.6) into consideration, we obtain (hj, m;) = 0. Consequently, h}, =
hm;, and condition (3.15) becomes
(z,v,5)+ adkj3 (z,v,b) = h(v, Kz, my)

Setting z = m, and z = m, in this condition, we see that it holds if and only if
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h="~(ky1ky3y (kyas3 + kyy51)

This enables us to write h;, in the form (3.19).

By virtue of relations (3.19), (1.5) and (1.6) condition (3.17) holds.

The combination of all these necessary conditions for a QI to exist is sufficient for identity (3.1) to
hold. Using the representations established for the operators H;, H, and H; and the parameters h; and
h,, we can write the QI (1.14) in the form (1.5).

4. REDUCING THE ORDER OF THE SYSTEM
Given the existence of a QI (1.14), we can write system (1.13) in the form

z' =(z+o0um; + N)x K(z+0m3)+(cvy —¢;)v Xmg 4.1)
v =vx K(z+amg), ¢, =k (s,Km,)
Setting y = z + A\, we express the system in terms of the basis I':
W =Ya(kizy +c3) +(cV3 =€)V,

Y2 = =y2(ki3y +¢3) = (cVs — )V,

4.2)
Vi = Valkay +c¢) -k Vays
vy ==Valkay +c)+k van
Vi =k (Viy2 —Van)s c3=cq—ky(@+d3), ¢4 =kjod
Integrals (1.2) and (1.15) become
ViV HVE =Ly +yVa @+ AV =h, ovi-2cvs+kyyi =g 4.3)
Put
y1=ycosE, y,=ysin§ (4.4)
The first two integrals of (4.3) give
vy = bycosE + bysinE, v, = bysing — bycos
4.5)

h=0-v3rh by =lh-(@+hovsly™, by =24 5%
It follows from system (4.2) that
(r?) =2(cvs — €2)(V2y — Viy2)
which gives (2) = ~2(cv3 — co)byy and, if cv; + ¢, , then, taking the third of the integrals of (4.3) into
account, we obtain an equation for v; which is integrable in terms of elliptic functions
V3 = H{ky (g ~ V2 +20,vs X1 - V3) — K2 [h - (@t + Ag)V5]2}2 (4.6)
The solution of system (4.2) reduces to integrating the equation

& =fi())cosE + f(1)

4.7
£ =-hk3y, frt)=—-c;—(cV3-ca)lh-(a+ Ag)vsly™ @7
The problem of determining, e.g. the Euler angles of the basis I may also be reduced to solving a
first-order equation.
If cvs = c,, theny = const and y,, y, may be expressed in terms of elementary functions.
If kjay = |c3] (), then as t — +o0, E(t) tends to a limit E* given by the condition
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cosE’ = —¢3(k;py)!

If ky2y < |c3|, we obtain a periodic solution, given for ¢ # 0 by formulae (4.4) and (4.5) where, in
accordance with Eq. (4.7),

cos =(b-acost)bcosT—a)”
sin =(a? - lz"’)'ls sint(bcost—a)”

a=c3, b=kyy, t= (a2 —bz)}it+c5

Since v; = c,c”! = const, the axis m; attached to the body precesses about the vertical.
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